作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
六年级上册的数学教案篇一
1、通过数学活动让学生了解田径赛道的结构,学会确定塞到起跑线的方法。
2、结合具体实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
教学重点:通过对赛道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
一、视频导入:
出示关于100米和400米比赛的视频,学生认真观察,想想两种比赛规则上有什么相同和不同。
(设计意图:吸引学生的注意力,能将100米和400米比赛直观的展现在学生面前,便于学生观察和了解。联系生活,增加学生学习数学的兴趣。)
相同:都在各自的跑道上。
不同:100米为直道,400米为弯道,且400米赛道运动员的起跑线不同。
师:为什么100米站在同一起跑线上,而400米却不同?(可追加问题:如果你是一名运动员,在400米跑中你会选择哪条赛道?)
(出示图片“赛道”)
生:在外圈的吃亏,外圈比内圈长。
生:内圈的起跑线向前移动一些,终点不变,这样比赛就公平了。
(给学生足够的思考和回答时间)
师:同学的思维非常的敏锐,而且超出了老师的想想。那么外圈的起跑线究竟要向前移动多少,比赛才相对的公平呢?
(设计意图:适当的表扬和鼓励,激发学生继续探究的兴趣,为下面学习新知奠定基础。)
师:所以为了解决比赛公平的问题,我们共同研究如何“确定起跑线”,板书课题。
二、进入新课。
1、分析赛道
师讲解跑道结构:400米标准运动场一般有8条赛道,最里面的为第一道,依次为第二道,第三道……,每条赛道有内外两条线组成,每条跑道的长度指这条赛道中内测线的长度。那么(课件出示以下三个问题)
(1)400米运动场指的是那条赛道的长度?
(2)每条赛道由几部分组成?
(3)如何计算每条跑道的长度?
(设计意图:第二、三问题直接点出本课的教学重点,且难度适中,在学生思考和讨论的过程中很容易得出合理的结论,以此来增强学生学习的兴趣。)
小组讨论
小组内和同学交流你的观点,看看谁的观点更准确,方法更简便。
学生汇报小组讨论结果
生:400米运动场指的是第一条赛道的长度。
生:由4部分组成,其中有两条直道和两条弯道,两条弯道可以组成以一个圆。
生:跑道一圈的长度=2条直道的长度+一个圆的周长
2、收集数据
师:利用刚才讨论的结果,计算各赛道的长度,并把所得的数据填到信息采集表中。
(设计意图:学生用自己认为可行的办法来解决实际问题,锻炼学生的实践能力,将理论和实际结合,不空乏的纸上谈兵。)
3、分析数据
师:如何计算相邻两跑道的长度差?
生:分别把每条跑道的程度计算出来,也就是计算两个直道长度与一个圆周长的总和,在相减,就可以知道相邻两条跑道的差。
师:谁还有更简便的计算方法么?
生:因为跑道的长度与直道无关,只要计算出各圆的周长,算出相邻两圆的周长相差多少米,就是相邻跑道的差。
师:如果我们在计算圆的周长时直接用π来表示,看我们有什么发现?
(72.6+1.25×2)π-72.6π
=72.6π-72.6π+1.25×2×π
1.25×2×π
……
4、形成结论
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:(结论)同学们经过努力终于找到了确定起跑线的秘密!只要知道跑道的宽度,就能确定起跑线的位置。
三、知识拓展:
200米、800米、1500米比赛的起跑线该如何确定?
五、小结,这节课你有什么收获?
生:为了使比赛公平,外圈跑道的起跑线要向前移动。
生:向前移动的距离是两个相邻跑道的差。
生:两个相邻跑道的长度差,只与跑道的宽度有关。
生:我知道400米跑相邻跑道的差的计算方法是
相邻赛道差=赛道宽×2×π
四、板书设计:
每条赛道的长度=两个直道的长度+圆的周长
400米跑相邻赛道的差=跑道宽×2×π
六年级上册的数学教案篇二
教材第19、20页相关内容及练习题
1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。
2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在平面图上画出物体的具体位置。
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
通过小组合作交流探讨,掌握画图的方法。
重点:能根据任意方向和距离确定物体的位置。
难点:根据描述标出物体在平面图上的具体位置。
合作交流、共同探讨
教师:多媒体课件,直尺、量角器等。
学生:直尺、量角器。
一、情景导入
1.交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于a市东偏南30°方向、距离a市600km的洋面上,正以20千米/时的速度沿直线向a市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2.导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
[板书课题:位置与方向(一)]
【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。
二、探究新知
㈠教学题例1
1.投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2.交流确定台风中心具体位置的方法。
⑴让学生尝试说说台风中心的具体位置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于a市所在的方向,也就是台风中心位置与a市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3.组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达a市呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1.投影出示例题2。
提问:在例题1的图中,b市、c市的具体位置应该标在哪里呢?请你在例题1的图中标出b市、c市的具体位置。
2.尝试画图。
⑴学生独立思考怎样标出b市、c市的具体位置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3.组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出b市、c市位置的方法。
b市:先确定方向,用量角器量出a市的北偏西30°(量角器中心点与a市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,b市距离a市200km,在图上也就是2cm。
c市:先确定方向,直接在图上找到a市的正北方向,再表示距离,用1cm表示100km,c市距离a市300km,在图上也就是3cm。
4.算一算。
台风到达a市后,移动速度变为40千米/时,几小时后到达b市?
200÷40=5(小时)
5.总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1.教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。
⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2.教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
六年级上册的数学教案篇三
1.使学生理解除数是小数的除法的计算方法,初步学会除数是小数的除法计算方法,能正确地进行计算。
2.培养学生应用已经学过的知识解决新问题的能力,初步认识转化的思想和方法。
一、复习铺垫
1.口算下面各题。
3.286.337.555.64
0.3280.6330.7550.564
提问:商的小数点位置是怎样确定的?
指出:小数除以整数,按整数除法算,商的小数点要和被除数的小数点对齐。
2.提问:
(1)除数扩大了10倍,要使商不变,被除数应该怎样?除数扩大了100倍呢?
(2)把13.8、4.67、0.725的小数点去掉,和原来的数相比,各扩大了多少倍?
(3)把5.344扩大10倍,小数点应该向哪边移几位?要扩大1000倍呢?
3.引入新课。
我们已经知道,被除数和除数扩大相同的倍数,商不变。(板书:被除数和除数扩大相同的倍数)而且也知道,把小数点向右移动一位、两位、三位......原来的数就扩大10倍、100倍、1000倍......今天就要应用这两方面的知识来继续学习小数除法。
二、教学新课
1.出示例4。
学生读题。
提问:求平均每小时织多少米要怎样算?(板书算式)
提问:这道除法计算题和上节课学习的除法计算题,有什么不同的地方?(板书课题)
先启发学生思考:我们已经学会了除数是整数的小数除法。这道题的除数是小数,能不能依据过去的知识,把除数是小数的除法转化成除数是整数的除法来计算呢?让学生先作讨论,并在全班交流。
现在再来说一说:怎样才能使除数变成整数?(把除数扩大10倍,要使商不变,也就是要得出原来的商,被除数应该怎样?(被除数也应该扩大10倍)教师在竖式中作出示范。结合说明:要把除数7.5扩大10倍,就是把除数的小数点向右移动一位,除数就变成整数了。为了简便,只要把除数7.5的小数点划去。除数扩大了10倍,要使商变,被除数47.85也要扩大10倍,只要把原来的小数点划去,向右移一位重新点上小数点,使被除数变成478.5。
追问:怎样把刚才的题转化成除数是整数的除法的?这样做的根据是什么?
评析:这里的例题教学先引出转化成除数是整数的除法这一问题,启发学生依据旧知萌生相除方法的动机,再让学生在讨论中明确怎样转化,弄清转化的依据,这就不仅让学生找到解决问题的方法,而且使学生明确算理,增强应用旧知解决新问题的能力,初步认识转化的思想。]
提问:这题转化后,现在变成多少除以多少了?这样的题在会计算了吗?让学生把这道题做完后,教师检查学生在计算时,要注意说明商的小数点要和转化后的被除数的小数点对齐。
提问:除数是小数的除法要转化成怎样的除法再计算?是怎样转化的?把被除数和除数扩大相同的倍数,只要把小数点怎样移动?(在前面板书后接着板书:吟小数点同时向右移动)如果被除数不是47.85,而是4.785,除数仍是7.5(板书:
7.5)4.785)怎样把它们转化成除数是整数的除法?如果被除数是47.85,除数是0.75呢?(板书:0.75)47.85一)提问:你认为计算除数是小数的除法,关键是什么?(小数点的处理)怎样移动小数点后再计算?
2.进行转化的专项训练。
(1)做练一练中的第1题。
(2)小结:把除数是小数的除法转化成除数是整数的除法的方法是:第一步,把除数中的小数点划去,使它变成整数;第二步,看除数扩大了多少倍,就把被除数也扩大同样的倍数,只要把被除数的小数点向右移动若干位。这样,就可以按照除数是整数的除法进行计算了。
三、巩固练习
1.试做练一练中的第2题。
学生练习时,教师注意学生在转化时被除数和除数是否扩大相同的倍数,竖式中没有用的o是否划去。评讲时,再让学生说一说是怎样把除数是小数的除法转化成除数是整数的除法的。
2.让学生将练习十的第2题、第4题做在课堂作业本上。
四、课堂小结
这节课学习了什么内容?除数是小数的除法要怎样算?这样算的根据是什么?你认为计算过程中的关键是什么?
五、家庭作业
练习十第3题。
六年级上册的数学教案篇四
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2.使学生能在方格纸上用数对确定位置。
能用数对表示物体的位置。
能用数对表示物体的位置,正确区分列和行的顺序。
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示_同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:_同学的位置在第二列第三行,我们可以这样表示:(2,3)。
按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。
如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点a向右平移5个单位,位置在哪里?哪个数据发生了改变?点a再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点a的方法平移点b和点c,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。