无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
倒数的认识教学设计篇一
本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
知道倒数的意义和会求一个数的倒数
1、0的倒数的求法。
课件
师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说,你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)
师:好朋友是双向的,可以说成“xxxx为好朋友(也可以说xxxx好朋友)
教师找一对儿同桌,让他们也说说相互间的关系。(xxxx为同桌,一起来上数学课)
师:那今天咱们来学点儿什么呢?
1、(课件出示例7)
请学生动手找找哪两个数的乘积是1?
学生回答教师演示。
2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。
教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数
3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)
师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。
引导学生说:3/8的倒数是8/3;8/3的'倒数是3/8。
师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)
4、请你再举个例子和你的同桌说一说。
(学生活动)
5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?
(学生写并汇报师板书。)
1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?
(学生畅所欲言,但是一定不规范。)
教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。
3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?
4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)
5、学生自主探索5和1的倒数。
学生先独立思考,在小组交流。
师根据学生的回答及时板书。
6、0的倒数呢?
启发思考,允许讨论。
因为0和任何数相乘都得0,不可能得1。
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个分数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。)
1、完成练习十一第一题。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(7/12=12/7)
师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。
3、完成练习十一第二题。
4、完成练习十一第三题。
5、完成练习十一第四题。
师:请你仔细观察每组数,你发现了什么?
同桌可以先互相说一说。
应该有的汇报是:
生1:我从第一组中发现真分数的倒数都是假分数(大于1)。
生2:大于1的假分数的倒数都是真分数(小于1)。
生3:几分之一的倒数都是整数。
生4:非0整数的倒数都是几分之一。
今天我们学习了什么?你有什么收获?
认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。
倒数的认识教学设计篇二
p27倒数的认识,练习六全部习题。
这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。