总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。优秀的总结都具备一些什么特点呢?又该怎么写呢?下面是我给大家整理的总结范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
mba数学考试必背公式总结 mba数学公式篇一
在备考2017年的mba数学考试的过程中,除了要多做练习,有些知识点还需要我们去背去记,下面yjbys小编为大家搜索整理了关于2017年mba数学考试必背公式,欢迎参考阅读,希望对大家备考有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
1、 过两点有且只有一条直线
2、 两点之间线段最短
3 、同角或等角的补角相等
4 、同角或等角的余角相等
5、 过一点有且只有一条直线和已知直线垂直
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、同位角相等,两直线平行
10、 内错角相等,两直线平行
11、 同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、 两直线平行,内错角相等
14 、两直线平行,同旁内角互补
15 、定理 三角形两边的和大于第三边
16 、推论 三角形两边的差小于第三边
17 、三角形内角和定理 三角形三个内角的和等于180°
18、 推论1 直角三角形的两个锐角互余
19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 、边边边公理(sss) 有三边对应相等的两个三角形全等
26 、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27、 定理1 在角的平分线上的点到这个角的两边的距离相等
28 、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 、推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39、 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、 定理1 关于某条直线对称的两个图形是全等形
43 、 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、 定理 四边形的内角和等于360°
49、 四边形的外角和等于360°
50、 多边形内角和定理 n边形的内角的和等于(n-2)×180°